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ABSTRACT

To satisfy future Air Force mission requirements, the Air Force Research Laboratory
(AFRL), sponsored by the Ballistic Missile Defense Organization (BMDO), led a
development program for a proof-of-concept cryocooler designed to support a cooling load
of 45mW at 10.4K. Under the technology development program, Astrium (formerly Matra
Marconi Space) in Stevenage, United Kingdom, developed a Stirling cycle cryocooler with
four Oxford flexure compressors and a two-stage expansion cold end. The cooler was
delivered to AFRL, instrumented, and integrated with a 36-inch vacuum chamber for
performance characterization and long life endurance evaluation. This paper contains a
short description of the cooler's physical components. Also presented are cool down
curves, characteristic load lines, and lessons learned during the characterization process.
The cooler will enter a long term endurance evaluation after completion of its performance
characterization.

INTRODUCTION

The Astrium 10K development model cryocooler is a two-stage Stirling cycle device,
which was designed to lift 45 mW of heat at 10.4K. The design heritage of this cooler
comes from the Rutherford Appleton Laboratory (RAL) "Oxford" design. The program
utilized existing compressor technology, which required four compressors to produce the
gas compression necessary to reach 10K. Astrium also modified their existing 20K cold
head design, using geometry and regenerator material recommendations from RAL. This
gave the cooler significant design and reliability heritage. This unit's lifetime is expected to
exceed 50,000 hours.

AFRL is characterizing the Astrium 10K cryocooler to examine its nominal
performance in space-like conditions, match the performance witnessed at the contractor's
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facility, and examine its quasi-steady state and transient performance over a range of
operating parameters and environmental conditions.

COOLER DESCRIPTION

The Astrium 10K cooler is comprised of a set of four compressors mounted in two co-
axial pairs (to minimize vibration at the base of the support structure), a displacer unit with
a momentum balancer, and a transfer line and manifold assembly, which links the
compressors and the displacer (Figure 1). The cryocooler system physical characteristics
are listed in Table 1. The cooler is driven by Astrium dual drive electronics. Both the
cooler and its experimental environment are controlled manually.

The Astrium 10K cooler was integrated with a 36" vacuum chamber at AFRL. The
cooler was delivered with a base plate designed for use in a vacuum chamber or on an
experiment bench. At Astrium, the cooler was only tested on the bench, where the heat
generated by the compressors was rejected by running cooling lines to the compressors as
well as through forced convection to the clean room atmosphere. In the vacuum chamber at
AFRL, all heat is rejected through conduction to two copper cold plates mounted
underneath the base plate, directly under the compressors.

CHARACTERIZATION

The characterization experiments done at AFRL provide an objective evaluation of a
cryocooler's mechanical and thermodynamic performance envelope as well as

FIGURE 1. Astrium 10K Cryocooler

TABLE 1. Cryocooler System Specifications

Mass of Mechanical Unit
Cooler Assembly Dimensions
(Includes support structure, but excludes
base plate and vacuum jacket)
Overall Cooler Assembly Dimensions

50.5 kg
740mm (Length)
375mm (Height)

782mm (Length)
477mm (Height)

x 420mm (Width)

x 420 mm (Width)

X

x
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FIGURE 1. Astrium lOK Cryocooler 

TABLE 1. Cryocooler System Specifications 

Mass of Mechanical Unit 50.5 kg 
Cooler Assembly Dimensions 
(Includes   support  structure,  but  excludes 
base plate and vacuum jacket) 

740mm (Length) x 420mm (Width) x 
375mm (Height) 

Overall Cooler Assembly Dimensions 782mm (Length) x 420 mm (Width) x 
477mm (Height) 
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experimental data for the validation of empirical models developed at AFRL to predict
cryocooler performance at conditions for which no experimental data exists.

Upon arrival at AFRL, the cooler was inspected, weighed, and measured to make sure
it met contractual requirements. After a short functional test on a bench top, it was
integrated with a vacuum chamber, and the characterization experiments began. First, the
cooler was allowed to reach thermal equilibrium at its nominal heat rejection temperature.
Then it was started, and its cool down curve and the lowest achievable temperature (with
no heat load) were recorded.

Table 2 shows the cooler's normal operating conditions. The cooler's nominal stroke
length was supposed to be 9mm on all four compressors. However, one of the compressors
was damaged during initial testing at Astrium, and as a result cannot be run beyond 8mm
without encountering noise problems. Due to this limitation, the normal stroke lengths were
established by Astrium as 9.2mm on compressors 1, 2, and 4, and 8mm on compressor 3.

Figure 2 shows a cool down curve for the Astrium 10K. The cooler is normally started
up with 6mm stroke length commands. When steady state is reached at 6mm, the
commands are increased to 7mm, 8mm, and finally 9.2mm/8mm, while allowing the cooler
to reach steady state at each stroke length command level.

TABLE 2. Astrium 10K Cryocooler Normal Operating Conditions

TC1 (K)
Cold End
Temperature

10.35

TC2 (K)
Cold End
Temperature

10.51

TC3 (K)
Midstage
Temperature

174.02

QL (mW)
Heat Load

45.54

TR(K)
Heat
Rejection
Temperature

289.91

Ta(K)
Ambient
Temperature

295.26

Stroke
Length 1
(mm)

9.20

Stroke
Length 2
(mm)

9.21

Stroke
Length 3
(mm)

8.00

Stroke
Length 4
(mm)

9.20

Stroke
Length
Displacer
(mm)

3.00

Stroke
Length
Balancer
(mm)

3.00

Operating
Frequency
(Hz)

30

Icompl (Amp)
4.35

Icomp2 (Amp)
4.31

Icomp3 (Amp)
4.10

Icomp4 (Amp)
4.39

Phase (Deg)
55.29

Input
Power
(W)

145.28

Specific
Power
(W/W)

3189.94

Wcompl
(W)

42.14

Wcomp2
(W)

40.09

Wcomp3
(W)

34.75

Wcomp4
(W)

43.33

Wdisp
(W)

2.00

Wbal (W)

0.02
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experimental data for the validation of empirical models developed at AFRL to predict 
cryocooler performance at conditions for which no experimental data exists. 

Upon arrival at AFRL, the cooler was inspected, weighed, and measured to make sure 
it met contractual requirements. After a short functional test on a bench top, it was 
integrated with a vacuum chamber, and the characterization experiments began. First, the 
cooler was allowed to reach thermal equilibrium at its nominal heat rejection temperature. 
Then it was started, and its cool down curve and the lowest achievable temperature (with 
no heat load) were recorded. 

Table 2 shows the cooler's normal operating conditions. The cooler's nominal stroke 
length was supposed to be 9mm on all four compressors. However, one of the compressors 
was damaged during initial testing at Astrium, and as a result cannot be run beyond 8mm 
without encountering noise problems. Due to this limitation, the normal stroke lengths were 
established by Astrium as 9.2mm on compressors 1, 2, and 4, and 8mm on compressor 3. 

Figure 2 shows a cool down curve for the Astrium lOK. The cooler is normally started 
up with 6mm stroke length commands. When steady state is reached at 6mm, the 
commands are increased to 7mm, 8mm, and finally 9.2mm/8mm, while allowing the cooler 
to reach steady state at each stroke length command level. 

TABLE 2. Astrium lOK Cryocooler Normal Operating Conditions 

TCI (K) TC2 (K) TC3 (K) QL (mW) TR(K) Ta(K) 
Cold End 
Temperature 

Cold End 
Temperature 

Midstage 
Temperature 

Heat Load Heat 
Rejection 
Temperature 

Ambient 
Temperature 

10.35 10.51 174.02 45.54 289.91 295.26 

Stroke Stroke Stroke Stroke Stroke Stroke Operating 
Length 1 Length 2 Length 3 Length 4 Length Length Frequency 
(mm) (mm) (mm) (mm) Displacer 

(mm) 
Balancer 
(mm) 

(Hz) 

9.20 9.21 8.00 9.20 3.00 3.00 30 

Icompl (Amp) Icomp2 (Amp) Icomp3 (Amp) Icomp4 (Amp) Phase (Deg) 
4.35 4.31 4.10 4.39 55.29 

Input 
Power 
(W) 

Specific 
Power 
(W/W) 

Wcompl 
(W) 

Wcomp2 
(W) 

Wcomp3 
(W) 

Wcomp4 
(W) 

Wdisp 
(W) 

Wbal (W) 

145.28 3189.94 42.14 40.09 34.75 43.33 2.00 0.02 
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TC1 (K)
Pi(W)
Stroke Length 1 (mm)
Stroke Length 2 (mm)
Stroke Length 3 (mm)
Stroke Length 4 (mm)
Stroke Length Disp (mm)
Stroke Length Bal (mml

6.50

4.50

4.00

Elapsed time (hr)

FIGURE 2. 6mm Stroke Length Cool Down Curve

During the characterization process, the cooler's baseline was established. The baseline
provides engineers with a diagnostic tool, with which they can track the transient health
and performance of the cryocooler. The baseline is a load line done at normal conditions
showing cold end temperature vs. heat load. Parameters monitored during the load line
include cold end temperature, midstage temperature, cold end heat load, cryocooler case
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During the characterization process, the cooler's basehne was established. The baseline 
provides engineers with a diagnostic tool, with which they can track the transient health 
and performance of the cryocooler. The baseline is a load line done at normal conditions 
showing cold end temperature vs. heat load. Parameters monitored during the load line 
include cold end temperature, midstage temperature, cold end heat load, cryocooler case 
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Nominal Load Lines

200 250
Heat Load (mw)

FIGURE 4. Nominal Load Lines (Tc = Cold End Temperature, Tmid = Midstage Temperature, Pi = Input
Power, and Tr = Heat Rejection Temperature)

temperatures, compressor and displacer stroke lengths, heat rejection temperature, and
input power. The compressor and displacer stroke lengths and heat rejection temperature
were controlled and monitored to ensure repeatability of the experiment. The baseline trial
is repeated during characterization to ensure that the cooler's performance has not degraded
over the course of the experimentation. Figure 3 shows the Astrium 10K baseline load line.

Nominal load lines were done next. These followed the same procedures as the
baseline load lines, except that they were done at different heat rejection temperatures.
Figure 4 shows the Astrium 10K nominal load lines. The midstage temperature and input
power both increase with increasing heat rejection temperature. However, the no-load cold
end temperature decreases with increasing heat rejection temperature.

LESSONS LEARNED

One of the first lessons learned was that cryopumping to the cold end occurs at
temperatures less than 30K, even in a 10~7 torr vacuum. When the cooler was first started
up, performance was significantly poorer than what it was at the Astrium facilities. The
lowest achievable temperature reached during the first cool down was 10.8K with no heat
load. Also, when the cooler was run for long periods of time the temperature would start
increasing slowly. Over the course of 5 days, the cold end temperature rose from 10.8K to
17.3K. Cryopumping was suspected as the cause of the temperature rise. The cooler was
shut down, and the vacuum level was monitored as the cold end temperature increased. A
two orders of magnitude decrease in the vacuum level from 9xlO"7 torr to 1.2 x 10"5 torr as
the cold end reached approximately 36K indicated that contaminants condensed on the cold
end were being released (see Figure 5). As a result, the cold end was intentionally cycled
between 10K to 40K over the course of three months in an attempt to draw out and remove
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temperatures, compressor and displacer stroke lengths, heat rejection temperature, and 
input power. The compressor and displacer stroke lengths and heat rejection temperature 
were controlled and monitored to ensure repeatability of the experiment. The baseline trial 
is repeated during characterization to ensure that the cooler's performance has not degraded 
over the course of the experimentation. Figure 3 shows the Astrium lOK baseline load line. 

Nominal load lines were done next. These followed the same procedures as the 
baseline load lines, except that they were done at different heat rejection temperatures. 
Figure 4 shows the Astrium lOK nominal load lines. The midstage temperature and input 
power both increase with increasing heat rejection temperature. However, the no-load cold 
end temperature decreases with increasing heat rejection temperature. 
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temperatures less than 30K, even in a 10'^ torr vacuum. When the cooler was first started 
up, performance was significantly poorer than what it was at the Astrium facilities. The 
lowest achievable temperature reached during the first cool down was 10.8K with no heat 
load. Also, when the cooler was run for long periods of time the temperature would start 
increasing slowly. Over the course of 5 days, the cold end temperature rose from 10.8K to 
17.3K. Cryopumping was suspected as the cause of the temperature rise. The cooler was 
shut down, and the vacuum level was monitored as the cold end temperature increased. A 
two orders of magnitude decrease in the vacuum level from 9x10"^ torr to 1.2 x 10"^ torr as 
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FIGURE 5. Vacuum spike shows release of external contaminants from cold end

contaminants trapped in the multi-layer insulation. Also, as part of the characterization
process, the cooler was cycled before each major experiment to minimize contamination on
the cold end and to ensure the repeatability of the experimental data.

When the cooler is cycled to drive contamination from the cold end, it is restarted
when the cold end warms to approximately 40K. If the cooler is restarted with the cold end
between 40K and 55K, a safety trip in the displacer is activated. A stiction test was done on
the displacer, but there were no signs of rubbing (Figure 6).
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contaminants trapped in the multi-layer insulation. Also, as part of the characterization 
process, the cooler was cycled before each major experiment to minimize contamination on 
the cold end and to ensure the repeatability of the experimental data. 

When the cooler is cycled to drive contamination from the cold end, it is restarted 
when the cold end warms to approximately 40K. If the cooler is restarted with the cold end 
between 40K and 55K, a safety trip in the displacer is activated. A stiction test was done on 
the displacer, but there were no signs of rubbing (Figure 6). 
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Interface
Temperature
= 269K

FIGURE 7. Thermal Map of the Astrium 10K Cryocooler

The placement of the thermocouples that monitor heat rejection temperature is also
notable. The usual standard is to measure the heat rejection temperature at the interface
between the compressors and the heat rejection surface (i.e. the surface between the cooler
mount and the spacecraft heat rejection system). By this standard the spacecraft designer
can compare the performance of various coolers at a given spacecraft heat rejection
temperature. At the Astrium facility, the average of the compressor head temperatures was
reported as the heat rejection temperature. The compressor head temperatures were the
only readings taken besides the cold end and midstage temperatures. At AFRL, both the
temperature of the compressor heads and the temperature at the interface between the
mounting plate and the cold plates (which simulates the spacecraft heat rejection interface)
are monitored and recorded. The temperature difference between the compressor heads and
the cold plate interface is approximately 20K while the cooler is running. For example, if
the temperature of the compressor heads is 290K, the temperature of the interface between
the mounting plate and the cold plates is approximately 270K. Because the compressor
head temperature upper limit is 308K (as set by Astrium), the temperature at the mounting
plate interface must be kept below 288K. To allow for data comparison between Astrium
data and AFRL data, the heat rejection temperatures reported in this work were defined as
the average of the compressor head temperatures. Figure 7 shows a thermal map of the
cooler taken during a load line. In this case, the cold end heat load is 250mW with an
average heat rejection temperature of 290K. As noted, any realistic integration of this
cooler design on a spacecraft bus would require a bus rejection temperature 20K less than
the data provided in this report.
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The placement of the thermocouples that monitor heat rejection temperature is also 
notable. The usual standard is to measure the heat rejection temperature at the interface 
between the compressors and the heat rejection surface (i.e. the surface between the cooler 
mount and the spacecraft heat rejection system). By this standard the spacecraft designer 
can compare the performance of various coolers at a given spacecraft heat rejection 
temperature. At the Astrium facility, the average of the compressor head temperatures was 
reported as the heat rejection temperature. The compressor head temperatures were the 
only readings taken besides the cold end and midstage temperatures. At AFRL, both the 
temperature of the compressor heads and the temperature at the interface between the 
mounting plate and the cold plates (which simulates the spacecraft heat rejection interface) 
are monitored and recorded. The temperature difference between the compressor heads and 
the cold plate interface is approximately 20K while the cooler is running. For example, if 
the temperature of the compressor heads is 290K, the temperature of the interface between 
the mounting plate and the cold plates is approximately 270K. Because the compressor 
head temperature upper limit is 308K (as set by Astrium), the temperature at the mounting 
plate interface must be kept below 28 8K. To allow for data comparison between Astrium 
data and AFRL data, the heat rejection temperatures reported in this work were defined as 
the average of the compressor head temperatures. Figure 7 shows a thermal map of the 
cooler taken during a load line. In this case, the cold end heat load is 250mW with an 
average heat rejection temperature of 290K. As noted, any realistic integration of this 
cooler design on a spacecraft bus would require a bus rejection temperature 20K less than 
the data provided in this report. 
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FUTURE PLANS

The Astrium 10K cryocooler will go through optimization trials next/These trials
investigate the combination of operating parameters that enable optimum cooler
performance. In optimization experiments, all controllable operating parameters are kept
constant except for one. The one parameter is varied to determine which value provides the
most cooling at the lowest temperature and input power. An optimization trial was done at
Astrium, so the AFRL optimization trials will be used to verify the optimum values or
identify small changes in performance due to experiment stand differences or new
operating factors. Phase angle, drive frequency, compressor offset, and expander stroke
length will be investigated.

The cooler will also undergo characterization load lines, in which both the heat
rejection temperatures and compressor and displacer stroke lengths are varied from their
nominal values. These load lines provide engineers with a map of the cryocooler's
performance capabilities during steady state operation

Cool down curves at different heat rejection temperatures will also be obtained. These
curves allow engineers to predict what the cool down period will be in a real life system.
The cooler's cold end temperature stability will also be investigated. The cold end
temperature stability trials determine whether or not the cooler can maintain nearly
constant low temperature performance without excessive drift rates or excursions that
could negatively affect cooled spacecraft components.

The parasitic heat load associated with the cryocooler and its instrumentation will be
determined by allowing the cooler to reach steady state at its lowest achievable temperature
(with no load), shutting the cooler off, and measuring the cold end warm up rate. At the
design point temperature, the warm up rate is proportional to the heat load into the
cryocooler's cold end. This procedure is repeated for small loads applied to the cold end.
The warm up rate (dT/dt) is plotted against each of the known applied loads. At the no load
condition, the temperature rate of change is not zero, due to the fact that the cold end is
warming up as a result of the parasitic heat load. By extrapolating the linear proportionality
plot for the warm up rates for several artificial heat loads, the parasitic heat load of the
cryocooler can be estimated.

Upon completion of the characterization experiments, the Astrium 10K cryocooler will
begin an endurance evaluation. The cooler will be run continuously at its normal conditions
(45mW @ 10.6K with a heat rejection temperature of 290K) until failure.
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